11 research outputs found

    An Opportunistic-Non Orthogonal Multiple Access based Cooperative Relaying system over Rician Fading Channels

    Full text link
    Non-orthogonal Multiple Access (NOMA) has become a salient technology for improving the spectral efficiency of the next generation 5G wireless communication networks. In this paper, the achievable average rate of an Opportunistic Non-Orthogonal Multiple Access (O-NOMA) based Cooperative Relaying System (CRS) is studied under Rician fading channels with Channel State Information (CSI) available at the source terminal. Based on CSI, for opportunistic transmission, the source immediately chooses either the direct transmission or the cooperative NOMA transmission using the relay, which can provide better achievable average rate performance than the existing Conventional-NOMA (C-NOMA) based CRS with no CSI at the source node. Furthermore, a mathematical expression is also derived for the achievable average rate and the results are compared with C-NOMA based CRS with no CSI at the transmitter end, over a range of increasing power allocation coefficients, transmit Signal-to-Noise Ratios (SNRs) and average channel powers. Numerical results show that the CRS using O-NOMA with CSI achieves better spectral efficiency in terms of the achievable average rate than the Conventional-NOMA based CRS without CSI. To check the consistency of the derived analytical results, Monte Carlo simulations are performed which verify that the results are consistent and matched well with the simulation results.Comment: arXiv admin note: substantial text overlap with arXiv:1709.0822

    Performance analysis of FSO using relays and spatial diversity under log-normal fading channel

    Full text link
    The performance analysis of free space optical communication (FSO) system using relays and spatial diversity at the source is studied in this paper. The effect of atmospheric turbulence and attenuation, caused by different weather conditions and geometric losses, has also been considered for analysis. The exact closed-form expressions are presented for bit error rate (BER) of M-ary quadrature amplitude modulation (M-QAM) technique for multi-hop multiple-input single-output (MISO) FSO system under log-normal fading channel. Furthermore, the link performance of multi-hop MISO and multi-hop single-input and single-output (SISO) FSO systems are compared to the different systems using on-off keying (OOK), repetition codes (RCs) and M-ary pulse amplitude modulation (M-PAM) techniques. A significant performance enhancement in terms of BER analysis and SNR gains is shown for multi-hop MISO and multi-hop SISO FSO systems with M-QAM over other existing systems with different modulation schemes. Moreover, Monte-Carlo simulations are used to validate the accuracy and consistency of the derived analytical results. Numerical results show that M-QAM modulated multi-hop MISO and multi-hop SISO FSO system with relays and spatial diversity outperforms other systems while having the same spectral efficiency of each system.Comment: 4 pages, 4 figures, 4th International Conference on Electrical Energy Systems (ICEES), Feb. 7-9, 2018, SSNCE, Chennai, TN, INDI

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools

    No full text
    The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2

    Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools

    No full text
    The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future
    corecore